导航菜单

The Natural Constant $e$

The constant e2.71828e \approx 2.71828 emerges naturally from growth and decay, logarithms, and calculus.

From Compound Interest to ee

Consider 11 unit of principal with 100% annual interest.

  • Compounded yearly: (1+1)1=2(1+1)^1 = 2
  • Quarterly: (1+14)42.4414\left(1+\dfrac{1}{4}\right)^4 \approx 2.4414
  • Monthly: (1+112)122.6130\left(1+\dfrac{1}{12}\right)^{12} \approx 2.6130
  • Continuously: limn(1+1n)n=e\lim_{n\to\infty}\left(1+\dfrac{1}{n}\right)^n = e
Limit definition of $e$
e=limn(1+1n)ne = \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n

Key Properties

  • ee is irrational (and transcendental).
  • Natural logarithm: lne=1\ln e = 1, ln1=0\ln 1 = 0.
  • Derivative: (ex)=ex(e^x)' = e^x; (lnx)=1x(\ln x)' = \dfrac{1}{x} for x>0x>0.
  • Exponential exe^x always positive, crosses (0,1)(0,1), increases on R\mathbb{R}.

Common Applications

  • Continuous growth/decay models: P(t)=P0ektP(t) = P_0 e^{kt}.
  • Limit computations and series expansions.
  • Change-of-base for logarithms: logax=lnxlna\log_a x = \dfrac{\ln x}{\ln a}.

练习题

练习 1

Evaluate limn(1+2n)n\displaystyle \lim_{n\to\infty}\left(1+\dfrac{2}{n}\right)^n.

参考答案

Rewrite (1+2n)n=[(1+2n)n2]2e2\left(1+\dfrac{2}{n}\right)^n = \left[\left(1+\dfrac{2}{n}\right)^{\tfrac{n}{2}}\right]^2 \to e^{2}.

练习 2

If P(t)=100e0.05tP(t) = 100 e^{0.05t}, find P(t)P'(t) and interpret.

参考答案

P(t)=1000.05e0.05t=5e0.05tP'(t) = 100 \cdot 0.05 \, e^{0.05t} = 5 e^{0.05t}. The amount grows at a rate proportional to its current value (5% per time unit).


总结

本文出现的符号

符号类型读音/说明在本文中的含义
ee数学符号e自然常数,约 2.718282.71828
lnx\ln x数学符号natural log of xee 为底的对数
exe^x数学符号e to the xee 为底的指数函数
P(t)P(t)数学符号P of t随时间变化的数量

中英对照

中文术语英文术语音标说明
自然常数natural constant e/ˈnætʃrəl ˈkɒnstənt iː/由连续复利与极限定义的常数
自然对数natural logarithm/ˈnætʃrəl ˈlɒɡərɪðəm/ee 为底的对数
连续复利continuous compounding/kənˈtɪnjʊəs kəmˈpaʊndɪŋ/利息连续计入本金的模型
指数增长exponential growth/ˌɛkspəˈnɛnʃəl ɡrəʊθ/比例与当前量成正比的增长

课程路线图

  1. 1

    Exploring Functions in Advanced Mathematics

    当前课程

    Functions are a core idea of advanced mathematics. This course walks through foundational concepts, key properties, and classic constants so you can read, reason, and compute with confidence.

    前往课程
进阶推荐

The World of Limits in Advanced Mathematics

Limits are the foundation of calculus and one of the most important ideas in advanced mathematics.

开始学习
进阶推荐

Sequences

Sequences bridge discrete thinking and calculus. This track covers core definitions, limits, convergence, and classic models.

开始学习

搜索